India National Olympiad 2004 Problems
Problem 1
$ABCD$ is a convex quadrilateral. $K$, $L$, $M$, $N$ are the midpoints of the sides $AB$, $BC$, $CD$, $DA$. $BD$ bisects $KM$ at $Q$. $QA = QB = QC = QD$ , and$\frac{LK}{LM} = \frac{CD}{CB}$. Prove that $ABCD$ is a square
Problem 2
$p > 3$ is a prime. Find all integers $a$, $b$, such that $a^2 + 3ab + 2p(a+b) + p^2 = 0$.
Problem 3
If $a$ is a real root of $x^5 – x^3 + x – 2 = 0$, show that $[a^6] =3$
Problem 4
$ABC$ is a triangle, with sides $a$, $b$, $c$ , circumradius $R$, and exradii $r_a$, $r_b$, $r_c$If $2R\leq r_a$, show that $a > b$, $a > c$, $2R > r_b$, and $2R > r_c$.
Problem 5
S is the set of all ($a$, $b$, $c$, $d$, $e$, $f$) where $a$, $b$, $c$, $d$, $e$, $f$ are integers such that $a^2 + b^2 + c^2 + d^2 + e^2 = f^2$. Find the largest $k$ which divides abcdef for all members of $S$.
Problem 6
Show that the number of 5-tuples ($a$, $b$, $c$, $d$, $e$) such that $abcde = 5(bcde + acde + abde + abce + abcd)$ is odd