International Mathematical Olympiad – IMO 1976 Problems
Problem 1
In a convex quadrilateral (in the plane) with the area of $32 \text{ cm}^{2}$ the sum of two opposite sides and a diagonal is $16 \text{ cm}$. Determine all the possible values that the other diagonal can have.
Problem 2
Let $P_{1}(x) = x^{2} – 2$ and $P_{j}(x) = P_{1}(P_{j – 1}(x))$ for $j= 2,\ldots$ Prove that for any positive integer n the roots of the equation $P_{n}(x) = x$ are all real and distinct.
Problem 3
A box whose shape is a parallelepiped can be completely filled with cubes of side $1.$ If we put in it the maximum possible number of cubes, each of volume $2$, with the sides parallel to those of the box, then exactly $40$ percent from the volume of the box is occupied. Determine the possible dimensions of the box.
Problem 4
Find the largest number obtainable as the product of positive integers whose sum is $1976$.
Problem 5
Let a set of $p$ equations be given,\[\begin{array}{ccccccc} a_{11}x_1&+&\cdots&+&a_{1q}x_q&=&0,\\ a_{21}x_1&+&\cdots&+&a_{2q}x_q&=&0,\\ &&&\vdots&&&\\ a_{p1}x_1&+&\cdots&+&a_{pq}x_q&=&0,\\ \end{array}\]with coefficients $a_{ij}$ satisfying $a_{ij}=-1$, $0$, or $+1$ for all $i=1,\dots, p$, and $j=1,\dots, q$. Prove that if $q=2p$, there exists a solution $x_1, \dots, x_q$ of this system such that all $x_j$ ($j=1,\dots, q$) are integers satisfying $|x_j|\le q$ and $x_j\ne 0$ for at least one value of $j$.
Problem 6
For all positive integral $n$, $u_{n+1}=u_n(u_{n-1}^2-2)-u_1$, $u_0=2$, and $u_1=2\frac12$. Prove that\[3\log_2[u_n]=2^n-(-1)^n,\]where $[x]$ is the integral part of $x$.