International Mathematical Olympiad – IMO 1992 Problems
Problem 1
Find all integers $\,a,b,c\,$ with $\,1<a<b<c\,$ such that\[ (a-1)(b-1)(c-1) \]is a divisor of $abc-1.$
Problem 2
Let $\,{\mathbb{R}}\,$ denote the set of all real numbers. Find all functions $\,f: {\mathbb{R}}\rightarrow {\mathbb{R}}\,$ such that\[ f\left( x^{2}+f(y)\right) =y+\left( f(x)\right) ^{2}\hspace{0.2in}\text{for all}\,x,y\in \mathbb{R}. \]
Problem 3
Consider $9$ points in space, no four of which are coplanar. Each pair of points is joined by an edge (that is, a line segment) and each edge is either colored blue or red or left uncolored. Find the smallest value of $\,n\,$ such that whenever exactly $\,n\,$ edges are colored, the set of colored edges necessarily contains a triangle all of whose edges have the same color.
Problem 4
In the plane let $\,C\,$ be a circle, $\,L\,$ a line tangent to the circle $\,C,\,$ and $\,M\,$ a point on $\,L$. Find the locus of all points $\,P\,$ with the following property: there exists two points $\,Q,R\,$ on $\,L\,$ such that $\,M\,$ is the midpoint of $\,QR\,$ and $\,C\,$ is the inscribed circle of triangle $\,PQR$.
Problem 5
Let $\,S\,$ be a finite set of points in three-dimensional space. Let $\,S_{x},\,S_{y},\,S_{z}\,$ be the sets consisting of the orthogonal projections of the points of $\,S\,$ onto the $yz$-plane, $zx$-plane, $xy$-plane, respectively. Prove that\[ \vert S\vert^{2}\leq \vert S_{x} \vert \cdot \vert S_{y} \vert \cdot \vert S_{z} \vert, \]where $\vert A \vert$ denotes the number of elements in the finite set $A$.
Problem 6
For each positive integer $\,n,\;S(n)\,$ is defined to be the greatest integer such that, for every positive integer $\,k\leq S(n),\;n^{2}\,$ can be written as the sum of $\,k\,$ positive squares.
a.) Prove that $\,S(n)\leq n^{2}-14\,$ for each $\,n\geq 4$.
b.) Find an integer $\,n\,$ such that $\,S(n)=n^{2}-14$.
c.) Prove that there are infintely many integers $\,n\,$ such that $S(n)=n^{2}-14.$