International Mathematical Olympiad – IMO 2015 Problems
Problem 1
We say that a finite set $\mathcal{S}$ of points in the plane is balanced if, for any two different points $A$ and $B$ in $\mathcal{S}$, there is a point $C$ in $\mathcal{S}$ such that $AC=BC$. We say that $\mathcal{S}$ is centre-free if for any three different points $A$, $B$ and $C$ in $\mathcal{S}$, there is no points $P$ in $\mathcal{S}$ such that $PA=PB=PC$.
(a) Show that for all integers $n\ge 3$, there exists a balanced set consisting of $n$ points.
(b) Determine all integers $n\ge 3$ for which there exists a balanced centre-free set consisting of $n$ points.
Problem 2
Find all positive integers $(a,b,c)$ such that
$$ab-c,\quad bc-a,\quad ca-b$$are all powers of $2$.
Problem 3
Let $ABC$ be an acute triangle with $AB > AC$. Let $\Gamma $ be its circumcircle, $H$ its orthocenter, and $F$ the foot of the altitude from $A$. Let $M$ be the midpoint of $BC$. Let $Q$ be the point on $\Gamma$ such that $\angle HQA = 90^{\circ}$ and let $K$ be the point on $\Gamma$ such that $\angle HKQ = 90^{\circ}$. Assume that the points $A$, $B$, $C$, $K$ and $Q$ are all different and lie on $\Gamma$ in this order.
Prove that the circumcircles of triangles $KQH$ and $FKM$ are tangent to each other.
Problem 4
Triangle $ABC$ has circumcircle $\Omega$ and circumcenter $O$. A circle $\Gamma$ with center $A$ intersects the segment $BC$ at points $D$ and $E$, such that $B$, $D$, $E$, and $C$ are all different and lie on line $BC$ in this order. Let $F$ and $G$ be the points of intersection of $\Gamma$ and $\Omega$, such that $A$, $F$, $B$, $C$, and $G$ lie on $\Omega$ in this order. Let $K$ be the second point of intersection of the circumcircle of triangle $BDF$ and the segment $AB$. Let $L$ be the second point of intersection of the circumcircle of triangle $CGE$ and the segment $CA$.
Suppose that the lines $FK$ and $GL$ are different and intersect at the point $X$. Prove that $X$ lies on the line $AO$.
Problem 5
Let $\mathbb R$ be the set of real numbers. Determine all functions $f:\mathbb R\to\mathbb R$ that satisfy the equation\[f(x+f(x+y))+f(xy)=x+f(x+y)+yf(x)\]for all real numbers $x$ and $y$.
Problem 6
The sequence $a_1,a_2,\dots$ of integers satisfies the conditions:
(i) $1\le a_j\le2015$ for all $j\ge1$,
(ii) $k+a_k\neq \ell+a_\ell$ for all $1\le k<\ell$.
Prove that there exist two positive integers $b$ and $N$ for which\[\left\vert\sum_{j=m+1}^n(a_j-b)\right\vert\le1007^2\]for all integers $m$ and $n$ such that $n>m\ge N$.