India National Olympiad 1996 Problems
Problem 1
a) Given any positive integer $n$, show that there exist distint positive integers $x$ and $y$ such that $x + j$ divides $y + j$ for $j = 1 , 2, 3, \ldots, n$;
b) If for some positive integers $x$ and $y$, $x+j$ divides $y+j$ for all positive integers $j$, prove that $x = y$.
Problem 2
Let $C_1$ and $C_2$ be two concentric circles in the plane with radii $R$ and $3R$ respectively. Show that the orthocenter of any triangle inscribed in circle $C_1$ lies in the interior of circle $C_2$. Conversely, show that every point in the interior of $C_2$ is the orthocenter of some triangle inscribed in $C_1$.
Problem 3
Solve the following system for real $a , b, c, d, e$:\[ \left\{ \begin{array}{ccc} 3a & = & ( b + c+ d)^3 \\ 3b & = & ( c + d +e ) ^3 \\ 3c & = & ( d + e +a )^3 \\ 3d & = & ( e + a +b )^3 \\ 3e &=& ( a + b +c)^3. \end{array}\right. \]
Problem 4
Let $X$ be a set containing $n$ elements. Find the number of ordered triples $(A,B, C)$ of subsets of $X$ such that $A$ is a subset of $B$ and $B$ is a proper subset of $C$.
Problem 5
Define a sequence $(a_n)_{n \geq 1}$ by $a_1 =1$ and $a_2 =2$ and $a_{n+2} = 2 a_{n+1} – a_n + 2$ for $n \geq 1$. prove that for any $m$ , $a_m a_{m+1}$ is also a term in this sequence.
Problem 6
There is a $2n \times 2n$ array (matrix) consisting of $0’s$ and $1’s$ and there are exactly $3n$ zeroes. Show that it is possible to remove all the zeroes by deleting some $n$ rows and some $n$ columns.