International Mathematical Olympiad – IMO 1993 Problems
Problem 1
Let $n > 1$ be an integer and let $f(x) = x^n + 5 \cdot x^{n-1} + 3.$ Prove that there do not exist polynomials $g(x),h(x),$ each having integer coefficients and degree at least one, such that $f(x) = g(x) \cdot h(x).$
Problem 2
Let $A$, $B$, $C$, $D$ be four points in the plane, with $C$ and $D$ on the same side of the line $AB$, such that $AC \cdot BD = AD \cdot BC$ and $\angle ADB = 90^{\circ}+\angle ACB$. Find the ratio
\[\frac{AB \cdot CD}{AC \cdot BD}, \]
and prove that the circumcircles of the triangles $ACD$ and $BCD$ are orthogonal. (Intersecting circles are said to be orthogonal if at either common point their tangents are perpendicuar. Thus, proving that the circumcircles of the triangles $ACD$ and $BCD$ are orthogonal is equivalent to proving that the tangents to the circumcircles of the triangles $ACD$ and $BCD$ at the point $C$ are perpendicular.)
Problem 3
On an infinite chessboard, a solitaire game is played as follows: at the start, we have $n^2$ pieces occupying a square of side $n.$ The only allowed move is to jump over an occupied square to an unoccupied one, and the piece which has been jumped over is removed. For which $n$ can the game end with only one piece remaining on the board?
Problem 4
For three points $A,B,C$ in the plane, we define $m(ABC)$ to be the smallest length of the three heights of the triangle $ABC$, where in the case $A$, $B$, $C$ are collinear, we set $m(ABC) = 0$. Let $A$, $B$, $C$ be given points in the plane. Prove that for any point $X$ in the plane,
\[ m(ABC) \leq m(ABX) + m(AXC) + m(XBC). \]
Problem 5
Let $\mathbb{N} = \{1,2,3, \ldots\}$. Determine if there exists a strictly increasing function $f: \mathbb{N} \mapsto \mathbb{N}$ with the following properties:
(i) $f(1) = 2$;
(ii) $f(f(n)) = f(n) + n, (n \in \mathbb{N})$.
Problem 6
Let $n > 1$ be an integer. In a circular arrangement of $n$ lamps $L_0, \ldots, L_{n-1},$ each of of which can either ON or OFF, we start with the situation where all lamps are ON, and then carry out a sequence of steps, $Step_0, Step_1, \ldots .$ If $L_{j-1}$ ($j$ is taken mod $n$) is ON then $Step_j$ changes the state of $L_j$ (it goes from ON to OFF or from OFF to ON) but does not change the state of any of the other lamps. If $L_{j-1}$ is OFF then $Step_j$ does not change anything at all. Show that:
(i) There is a positive integer $M(n)$ such that after $M(n)$ steps all lamps are ON again,
(ii) If $n$ has the form $2^k$ then all the lamps are ON after $n^2-1$ steps,
(iii) If $n$ has the form $2^k + 1$ then all lamps are ON after $n^2 – n + 1$ steps.